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Polygons
Computational geometry is fundamentally discrete

. Computation with curves and

smooth surfaces are generally considered part of another field, often called

"geometric modeling" .

A polygon P is the closed region of the plane bounded by a finite
collection of line segments forming a closed curve that does not intersect
itself .

↓
(a) (b)(c) (d) (l)



Theorem (Polygonal Jordan Curve). The boundary 24 of a polygon P partitions
the plane into two parts .

In particular ,
the two components of IRP/IP

are the bounded interior and the unbounded exterior
.

Sketch of the proof. Choose a fixed direction that is not

parallel to any edge of P.

ThenanypointXES
two sets :

~
& A 1) The ray through x in direction u

crosses &P in an even number of
times.

&

->

B 2) The ray through x in direction u

crosses &P in an odd number of

~
times.

Exercise
.

Prove thatEvery path between points lying in different sets must cross 2P.·3There is a path between points in the same set that doesn't contains
points of 29

.



A diagonal apolygonDianeSegmentconnectingtwoverts oent

/
(a) (b) (C)

Definition .

A triangulation of a polygon P is a decomposition of P
into triangles by a maximal set of non crossing diagonals .

8 triangles
↓
)

8 triangles

/ Y
7 diag

-
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T
-
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Some questions :

· How many different triangulations does a given polygon have ?

· How many triangles are in each triangulation of a given polygon ?

· Must every polygon always have at least one diagonal ?



Lemma: Every polygon P with more 3 vertices has a diagonal .

Proof: Let be v the lowest vertex of P; If there
are several take the rightmost.

Let a and b the

neighbors of V
.

If the segment at is contained in P andb n & P = Ea ,
b 3

then ab is a diagonal .

a
Otherwise, sinceP has more than three vertices

,
the

· b
closed triangle gabv contains at least one vertex of P

.

Let I be a line parallel to at through v
. Sweep this

line parallel to itself upward toward ab
.

l Let x the first vertex different to a
,
b or v

.% The (shaded) triangular region of the polygon
·

below line 1 and above v is empty of vertices.

① Because ux cannot int ap except at vandX

vx is our diagonal.



Theorem : Every polygon has a triangulation .

Proof :-IfP have a vertices

· Suppose /VK3 and the thi is valid for
Polygons with fewer vertices

· There is a diagd
St

.
d divides PintoP P

,
and Pr

/



Tetrahedralization
f

For a 3.dimensional polytope (polyhedron) P ,
we can "triangulate" P

using tetrahedrons.

:How many tetrahedrons ?

*PRI



Can all polyhedra be tetrahedralized ?



Open problem :

Find a characterization for tetrahedralizable polyhedra .

In 1992 Jim Ruppert and Raimund Seidel proved that determining
whether a polyhedron is tetrahedralizable is NP-complete .



Theorem
. Every triangulation of a polygon P with n vertices has

nz triangles andns diagonals .

Proof :

(VCP)l = n
,

(V(P2)l =he

I, have I have
n,-2 triang 42= 2 trian

↳edgesdag

P
Pr H - 2 + My- 2 = (i + h2) - 4

T un

= n + 2
- 4

= n -2

n1 - 3 + hz - 3 + 1 =

n .
+h - 5 = n + 2 -S = n - 3

E



We sometimes callery three consecutive vertices a
,

b, c If ac is a diagonal .

A

C
b

↑
b is the

ear tip

Corollary . Every polygon with IVIPSK has at least two ears
.

Proof : Exercise



The number of triangulations of a fixed polygon P has much to do with the "shape"



How
many triangulations there are in a convex n-gon ?



Binary Trees

A binary tree is a graph where each vertex has a maximum degree equal two
.

The order of a binary tree is the number of vertices with degree I

different to the root
.

·

/

·o



Dyck words

A word with alphabet consisting in only two letters
, say Ex

,
13 is called Dyck-word

If have the same number of X's and u's and in every "step #x * #Y

-

⑧ 1

①xx I

& XXiY
,

xYXY 2

& XxYY ,xxy
,

xixY
,
xixxy,xY S

① xxY
....



A Dyckpath is a lattice path in the plane that starts at the
origin 10

,
0)

,
consist of steps (1

,
1) (up) (1

,
-1) (down)

, stays on above the
x-axis

,
and ends at the point (2n

, 0) for a non-negative integer n
.

n= 1
·

n=2
O &

n= 3
. & & & & &

& & & &

n=5 &



Lattice paths

How many northeast lattice paths from 10, 0) to (n
,
n) don't pass below

the x= i diagonal ?

-Y



Let's count it !!

First let's count all the possible paths .

⑪ There
are

to
many paths goin from 10 , 03 to (n

,
n)



Bad paths reflections

· Observe that there is a

bjection between every
reflected bad path and the

set of all possible paths going

-
from 10

,
0) to (n+ 1

,
n-1)·

There arsuch paths .

-



Finally by the inclusion-exclusion principle

(n = (n) - (ii) = nt() .

Then : O A convex n-gon admit
Can triangulations .

- There are Cn Brees/D.
words/D . paths/Plattice

paths of order n.



Art gallery problem. (by Keel

Our gallery (in IR2) is :

· A simple polygon P (no holes
,
no auto intersections (

Our guards are :

· A set of points ScP T
We said that our gallery is safe if

· Every paint peP can be "seen" by a point in S.

How
many guards do we needs our gallery to be safe ?

Can one guard keep safe the gallery ?

If the guards are located in the corners (vertices) what is the
small size of the set S ?



We said that point X can see point i cor i is visible to x) Iff the closed

segment XY is nowhere exterior to the polygon P
.

& ⑨

⑧

·
⑨

·
⑳

Two polygons of niz vertices : (al requires s guards; (b) requires 4
.



More formally :

Express as a function of n
,
the smallest number of guards that suffice

to cover any polygon of n vertices.

Let g(p) be the smallest number of guards needed to cover P
.

i
.e

, g(D) = Min
,
155 : Scovers P31 ,

Let Pn be a polygon of n vertices
,
then we define

G(n)= maxpy g(Pn) .

Then we are looking for G(n)
.



For a "small n



We need at least (4)

H = 12

n= 9

⑨ ⑨ &
① & & ①

Chratal construction

Then, is it true that G(n) = 1* I ?



lemma : Every triangulation of a polygon isacolorable.

Proof : By induction on the number of vertices of
P.

Base case: Consider the simple triangulation, a single triangle .

coloring each vertex with different colors there are no

two adjacent with the same color.

Inductive hypothesis : Assume the lemma is valid for any
triangulation of a polygon P with n vertices

.

S
Inductive step : Now consider a polygon P with no vertices .

Choose a diagonal d that divides P into two smaller polygons P
, and P.

By inductive hypothesis these polygons can beacolored
.

Consideringthe colors assigned to the diagonal d in P, and

perhaps after a possible permutation of the colors assigned to P
we obtain a 3-coloring of

P.

Thm [Fisk 1978] : G(n) = (5).
Proof : Chiatal construction give us Gln()

.

By the lemma every triangulationTof a polygon Pis a-colorable
.

Since every point
in P lies in a triangle teT and every point in a triangle is visible for all its vertices,

choosing one chromatic class we can see all the points of
P.



Area of a Triangle .

From linear algebra we know that If A and B are vectors
,
then the cross product IAXBI

determine the area of the parallelogram with sides A and B
.

A = ( 1
, 3) +

B= (4,
3)

1AXB1 = Idet( 3)) = 1 - 3- 121 = 15↓
Then

for a
,
b,c points in IR we have Areasab= (b-a)x(c-a))

S
⑨

a

·

b
&

Ca

·

b-a



Lemma : Twice the area of a triangle T=Ca
,
b

,
c is given by

214) =/ = (b-ad(-a-Co-ada b

Area of a Polygon.

A(p) = A(vo
, V ,
k) + A(Vo

,VVs)+... + /Vo ,
Unz

,
Un-)

·

3
4

5*
·

T
2



Area of a quadrilateral

A(Q) = A(a
,
b

,

c (+Ala
,

c
,
d) = A(d

,
a

,
b) + A(d

,
b

,
c)

= 2A(Q) = Gob
, -abrtbec-cob,

⑭taido-and,Cod , -dos

= aobi-a , bo + boc-cobi ta,do-aoditcodi-dol
= Gob

,
-a

,
bo + bod-bicotcod ,

-Cd+doa ,
-d

, a.

In general fora convex polygon P

2+D)= (XiY-Xinii) A(p)

(1 ,
4)

(4
, 5)

12 - Lots
(0,2) P

= 2 /(10+30 + 16+ 2) - ( - s +8+S))
= 25

(S , 0)
(0, 0)

(2, -1)



Area of a Nonconvex Quadrilateral.

A(Q) = A(a
,

b
,
c) + A(a

,
c

,
d)

C = (S , 8)

A(Q)=+ Iderbil I I 5,4 i

==((b + 72 + 3) - (1s + 16 +a) + (16 +s + 20) - (40 +8 + s)]
= 2 ((83 - 40) + (4) - S3)]

+ a= (2
,
1) =

-[43 - 13]

= 15



Lemma 1 . 3 .
2

. If T=sabc is a triangle with vertices oriented countercokwise
,
and

pis any point in the plane ,
then

A(T) = A(p ,
a

,
b) + A(p ,

b
,
c) + A(p ,

C
,

a),



Theorem (Area of Polygon] .
Let a polygon (convex or nonconvex) P have

vertices Vo
, ...,

In- labeled counterclockwise
,

and let p be any point in the plane.
Then

A(p) = A(p ,
Vn - z ,

Vn-1) + A(p , V
,
Vz) +A(p , Va() + ... + Alperm-ncVn) + Alp , Un

,
Vo

If vi = (xi
,
ii) =

2A(p)=Z (x = in - YiX=+)

(XitXit) (in-T



Ordertypes and chirotopes (for point sets in IRV

The order type of a set of points in the plane refers to the combinatorial

information about the orientation of every triple of points in the set.

Specifically ,
it describes whether each triple form a left turn a right turn

or is collinear
.

Two sets of points in IR2 have the same order typeIf there is

a one-one correspondence between their points that preserves the orientation

of every triplet.

C
d ⑧

· BC
Sz

Si T
⑨
↳&

a b

The function f : S.n S
:

where flai= 2
, f(b = B , f(c) = r , f(d) = E

satisfy that the orientation of every triplet TiS , is the same

that the orientation of f(T) en Sz.



For a set of points P= Sp, ...,
piSinIRd

,

the Chirotope X Is a function :

d+ 1

X : El,
2, . . ., my -> ( -

,
+

,
0)

where X(I
,
i
, . . .

,
[d) represents the orientation of the d+ points indexed

by si, ...,
ideb.

Ps * (1
,
2

,
3) := sign of= signof sign

&

X (1 , 2
, 4) = +

① P X (1
,

3
,
4) = + then the chirotope is

&

Pr 2) (2
,

3
,
4) = represented by ++++.

·

Di

X(
,
2

,
3) = +

x(1 ,
2

,
3) = t

Pa x(1
,2) = 0

X(1
,

2
,
4) = + x(1

,
3
,
4) =

Pa X (1
, 3

,
4) = -

*
X (2 ,34) = +

* X (2,
3

,
4) = +

③ then the chirotope is
· Pu then the chirotope is

· Pu ⑨②
= ·

Pr
represented by ++ - + Pi Pr represented by+o

- +

Pi



· The chirotope is antisymetric , meaning that swapping
two indices the tuple the sign of the function changes.

· Pr · Pr

X(P) = ++++ X(P) = = ---

·

·
· Pz

Pi

· Pz

po pay

· P3

X(P) = + + = =

·
· Py

por



How
many order types there are ?

⑯
⑨ ⑨ ⑨

&
① · &

D &

& &

&

⑳ & ⑨
& ·

⑨ & & ① G &

Number of pants Number of order types

3 I

2

i 3

16

135

3315

9 158817

10 In 309547

1) 2334312907



Circular Sequences.

· a da d ·
-----&

--
----

- d· · · ·a
ac b

ad

dach adcb adba abda

da s b
d

·--
b

·
-

C

a ·-b & es
-- · ⑳

a

dach

abod bacd bead adob
-

adba
abde
a bed
bacd

bea





Convexity (I recommend to read Matousek's book).

A set CIR" is convex If for every two points X
,
eC the whole

segment xi is also contained in C
.

In other words
, for every telo

,
13,

the point +x + 11-t) belongs to C.

The intersection of an arbitraryfamilyofconveSetsisobviously convex
.

So we can define
XcI

,
denoted by conv(X)

,
as the intersection of all convex sets

in IR containing X
.

&

&

&

D

·----.
&

&
·

& ·
①

D · .....
·

X conv(X)



Claim
.

A paint - belongs to conv(X) If there exist points
X

,
Xn

, ...,
XneX and nonegative real numbers t

...,
to with=

such that x= tixi.

Proof :
=) By induction on the number of points.

· If n=2 this is by definition .

· Suppose this is valid for n-1 points
" Letz be a point in conv(X) where IX = n

.

.
p = &X + Guet--- + Cmn ,

Exi =

X = +p + (-t)Xn

= CitX
, +-- - +Gnt +i-t] Xn

it + (-t) = t + (t

= t + (1 - t)

=/

= The set of all convex combinations contains X
,

and it is convex. A



Theorem (Caratheodory's theorem) .

Let XEIR*
.

Then each point
of couv(X) is a convex combination of at most d+ points of X.

Proof : Let p be a point in the convex hull of X
,
then

P= a. X ,
+ &eXz +... + AnXn

for some positive dis, s
.

t
. [ = 1.

If ned+ we are done.

Suppose then that nad+ 1
.
Then the paints xxx

,
-X , ..., Xn-x , are linearly

dependent. Let B : i = z, ...,
n

,
be real numbers

,
not all zero, s .

t

BilX-X) = 0. Prove

So there are constants ....., he not all zero
,
st

rix = o and = 0 7 Prove it

Let F be a subset of positive scalars Sie[n] : fiz03

a= ma



Then we have p=-apixi,

xix-tor
at least one thisn a

in deed is gonna be

GiX =

↑ observe that the sum of coefficients is 1
.

: We have a convex cour with les than mdt points.

After repeating the above proces several times
we can express pas convconvination of at most d+ 1 pts

⑭



Thm/Radon's lemma) .
Let A be a set of d+z points in IRS .

Then there exist two disjoint subsets A
.,

A > A s .

t
. conv(A) &conv(B) # 0.

Proof : Let A = 19, , . .

.,
ad+3

,

These points are affinely dependent,
Then exists numbers <

, ...,
dat not all of them o sit.

EGia: = 0 and [xi = 0
·

Set P= Ei : a co3
,

N = Si : di <03

Let us put A= Sai : Tt P3 Az= Gai : ceN3 .
We are goin

to

exhibit a pointx in the intersection of the convhull of
these sets.

Put S : we have S

define = a

Since did = o = Zidita we also have



Thm (Helly) .

For a finite collection of convex sets C
...., In CIRS

,

wherhid
, If the intersection of every d+ of these sets is nonempty ,

then

+

Proof : By induction on n
.

Sincehid by hypothesis we have a base case

However we are going to show the case n = d+ z
,
which will later

be used in conjunction with the inductive hypothesis to prove the
inductive step.

Choose a common point at of all sets Cj where ji.
i

. e
.,

aie & (j .
Let A = Ea

, an ..., ada3.
j + i

By Radon's Thm
,
there is a nontrivial

, disjoint partition Ai ,
A

o As .
+ conv(A .) Iconv(A) intersect at some point X .

Also
,

observe that Fic [d+2]
,

the only point that is not in C : but is in A

Is ai .
Note that since ait A

,
and A = A ,

uA
, we can assume without loss

of generality that a A . This means that aA so A C .

Since C, is convex
,

it has to contain the convex hull of A ,
and in particular the point X.

Hence
,

x is common to all the Cus
,

i
. e., x

A similar argument proves the cases nadtz
.
A



Thm (Helly) .

For a finite collection of convex sets C
...., In CIRS

,

wherhid
, If the intersection of every d+ of these sets is nonempty ,

then

+
Exercisee :

O Let I be a finite family of parallel line segments in IR,
each three of which admit a common transversal. Then there

is a common transversal to all members of 1.

-↓
Proof : We may suppose I consist in at leasta members and all of them

are parallel to the Y-axis.

For each segment Sel Let Cs(a,,b) eR Slab where labizi axxb 3
.

Each Cs is convex and each 3 have nonempty intersection then by H
.

T

.

there is a point (ab 1 Cs
St]

The line i = doxtbo is a transversal common to all members ofJ.



② Consider a family of convex sets F = EC
, ...,
(3 in IRC

,
and let C be a convex set in R

If for every diz elements of F there is a translation of C that intersect them,

exist a translation of C that intersect all the convex sets in F.

C I Ci

23

Cy

-
↓

Proof : Let C = Exe : (+C)1C+03
.

Then each set Ci is convex and each +

of these sets Cis have a common point . By H
.

T there exists a point

in ,
and tGe A


