¹⁶⁵ Math a Computers

Antonio J. Torres

H,W,F 4:10-5:00 PM Hart Hall ¹¹⁵⁰ 0_{ff}ice h: 1004, PSEL T, T ¹¹ : ⁰⁰ - 12: 00

Computational geometry is fundamentally discrete . Computation with curves and smooth surfaces are generally considered part of another field, often called "geometric modeling".

^A polygon ^P is the closed region of the plane bounded by ^a finite collection of line segments forming a closed curve that does not intersect itself .

Theorem (Polygonal Jordan Curve). The boundary ²⁴ of ^a polygon ^P partitions the plane into two parts. In particular, the two components of \mathbb{R}^2 /2P are the bounded interior and the unbounded exterior.

Exercise. Prove that (a) Every path between points lying in different sets must cross ap. a)-cvery path between points iying in allierem sets must cross of.
b) There is a path between points in the same set that doesn't contains points of 29.

A diagonal a a polygon P is a line segment connecting two vertices of P
and lying in the interior of P, not touching a P except at its endpoints.

Definition . ^A triangulation of ^a polygon ^P is ^a decomposition of ^P into triangles by a o maximal set of non crossing diagonals.

Some questions:

- · How many different triangulations does ^a given polygon have ?
- · How many triangles are in each triangulation of a given polygon?
- · Must every polygon always have at least one diagonal ?

Lemma: Every polygon P with more 1948 is vertices has a 3 vertices has a diagonal.

 I_f the segment \overline{ab} is contained in P and \overline{ab} \overline{a} \overline{b} $\$ then $ab \circ a$ diagonal.

Otherwise, sinceP has more than three vertices , the closed triangle gabv contains at least one vertex of P.

Let \perp be a line parallel to ab through v. Sweep this $\frac{1}{2}$ line parallel to itself upward toward $\frac{1}{2}$ ab.

line parallel to itself upward toward
Let x the first vertex different to a
The (shotel) triangular region of the , b or v . The (shoded) triangular region of the polygon
below line 1 and above v is empty of vertices.

The (shoded) triangul
bebw line 1 and
Because vx cannot
vx is our diagonal.

Theorem: Every polygon has a triangulation .

Proof: If P have 3 vertices

·

Suppose $|V| \ge 3$ and the thin is valid for Polygons with fewer vertices

Tetrahedralization f For a 3. dimensional polytope (polyhedron) ^P , we can "triangulate" P using tetrahedrons.

:How many tetrahedrons ?

Can all polyhedra be tetrahedralized ?

Find a characterization for tetrahedralizable polyhedra .

In ¹⁹⁹² Jim Ruppert and Raimund Seidel proved that determining whether ^a polyhedron is tetrahedralizable is NP-complete.

Theorem. Every triangulation of a polygon P with n vertices has

We sometimes call (ears) three consecutive vertices a , b,c if ac is a diagonal.

Proof: Exercise

The number of triangulations of ^a fixed polygon P has much to do with the "shape"

How many triangulations there are in a convex n-gon ?

Binary Trees

^A binary tree is ^a graph where each vertex has ^a maximum degree equal two .

The order of ^a binary tree is the number of vertices with degree I different to the root .

A word with alphabet consisting in only two letters, say {x, is called Dyck-word 4 have the same number of x's and y's and mevery step #x7#x

^A Dyckpath is ^a lattice path in the plane that starts at the origin 10, 0), consist of steps (1 , 1) (up) (1 , -1) (down) , stays on above the x-axis, and ends at the point (2n,0) for a non-negative integer n.

Lattice paths

How many northeast lattice paths from 10, 0) to (n, n) don't pass below the $x = x^{\sigma}$ diagonal?

Let's count it!

Bad paths reflections

Finally by the inclusion-exclusion principle

$$
C_n = \binom{2n}{n} - \binom{2n}{n+1} = \frac{1}{n+1} \binom{2n}{n},
$$

Then : ^O ^A convex n-gon admit Can triangulations .

- There are Cn Brees/D. words/D. paths/Plattice paths of order n.

Art gallery problem. (by Klee)

Our gallery $(|n R^2)|$ is:

• A simple polygon P (no holes,no autointersections)

Our guards are:

- · A set of points ScP
- We said that our gallery is safe if
	- · said that our gallery is safe if
Every point peP can be "seen" by a point in S.

How many guards do we needs our gallery to be safe ?

Can one guard keep safe the gallery ?

If the guards are located in the corners (vertices) what is the s mall size of the set S ?

T

We said that point x can see point y (or y is visible to x) iff the closed segment xy is nowhere exterior to the polygon P.

Two polygons of n=12 vertices: (a) requires 3 guards; (b) requires 4.

$More$ formally:

Express as a function of n , the smallest number of guards that suffice to cover any polygon of ⁿ vertices.

Let
$$
g(P)
$$
 be the smallest number of guards needed to over P.

i . e, $g(p)$ = m_1n_3 1 { 5: 5 covers P31,

Let Pn be a polygon o_1 n vertices, then we define

$$
G(n) = max_{R_n} g(R_n)
$$

Then we are looking for G(n).

Chvátal construction

Then, is it true that $G(n)$ = $\lfloor \frac{n}{3} \rfloor$?

lemma: Every triangulation of a polygon is 3-colorable.

Proof: By induction on the number of vertices of P.

Base case: Consider the simple triangulation, ^a single triangle . coloring each vertex with different colors there are no two adjacent with the same color.

Inductive hypothesis : Assume the lemma is valid for any triangulation of a polygon ^P with ⁿ vertices .

 $\left\langle \right\rangle$

Inductive step: Now consider a polygon P with n_H vertices. Choose a diagonal \overline{d} that divides P into two smaller polygons P_1 and P_2 . By inductive hypothesis these polygons can be 3-colored. Considering the colors assigned to the diagonal d in R and perhaps after a possible permutation of the colors assigned to P_{ϵ} , we obtain a 3-coloring of P.

 T_{hm} [Fisk 1978]: $G(n) = \lfloor \frac{n}{3} \rfloor$. $Proc_f$: Chvatal construction give us $G(m) \ge \lfloor \frac{n}{3} \rfloor$.

By the lemma every triangulationTof ^a polygon Pis a-colorable. Since every point in P lies in a triangle tet and every point in a triangle is usible for all its vertices, in P lies in a triangle tcT and every point in a triangle is usible for a
choosing one chromatic closs we can see all the points of P.

Area of ^a Triangle.

From linear algebra we know that μ A and B are vectors, then the cross product $(A \times B)$ determine the area of the parallelogram with sides ^A and ^B .

 ${\perp}\varepsilon$ mma: Twice the area of a triangle T=(a,b,c) is given by

area of a triangle T=(a,b,c) is given by
\n
$$
2.4T
$$
 = $\begin{vmatrix} a_0 & a_1 & b_1 \\ b_0 & b_1 & b_1 \\ c_0 & c_1 & 1 \end{vmatrix}$ = $(b_0-a_0)(c_1-a_1) - (c_0-a_0)(b_1-a_1)$

Area of ^a Polygon.

 $A(P)$ = $A(v_0, v_1, v_2) + A(v_0, v_1, v_3) + ... + A(v_0, v_{n-1}, v_{n-1})$

Area of a quadrilateral

$A(Q) = A(a|b,c) + A(a,c|d) = A(d,a,b) + A(d,b,c)$ $=\alpha(e^{i\theta}e^{i\theta}+a(a,e^{i\theta})) = \alpha(e^{i\theta}e^{i\theta})+a(a,b,e)$
=> 2A(Q) = ab_r = a,b_e + a,c) = a₂c) + b₂c, - cob, = $a_0b_1 - a_1b_0 + a_1c_0 - a_0c_1 + b_0c_1 - c_0b_1$
+ $a_0c_1 - a_1c_0 + a_1c_0 - a_0d_1 + c_0d_1 - d_0c_1$ $= a_{ab} - a_{b} - b_{ac} + b_{ac} - c_{ab} + a_{a} - a_{ac} + c_{ad} - c_{bc}$ = $a_0b_1 - a_1b_0 + b_0c_1 - a_0b_1 + a_1a_0 - a_0a_1 + c_0a_1 - a_0c_1$
= $a_0b_1 - a_1b_0 + b_0c_1 - b_1c_0 + c_0d_1 - c_1d_0 + d_0a_1 - d_1a_0$ In general fora convex polygon ^P $2cA(p) = \sum_{i=1}^{n-1} (x_i y_{i} - x_{i+1} y_i)$ $A(p)$ (1, 4) $(4, 5)$ 12- (1,4)

(0,1)

(2,2) = 2 (0(1) + 2(0) + 5(2) + 6(5) + 4(4) + 1(1) - [0(2) + (-1)(5) + 0(6) + 2(4) + 5(1) + 40)]

(0,2) = 2 ((0+30 + 1(6+2) - (-5 + 8+S) | \vert = \vert 25 $(5,0)$ (o, o) $(2, -1)$

Area of a Nonconvex Quadrilateral.

Lemma 1.3.2. I_f T= Δabc is a triangle with vertices oriented counterclokwise, and p is any point in the plane, then
 $A(T)$ = $A(\rho, a, b) + A(\rho, b, c) + A(\rho, c, a)$

$$
A(T) = A(p,a,b) + A(p,b,c) + A(p,c,a)
$$

Theorem [Area of Polygon]. Let a polygon (convex or nonconvex) P have
vertices vo,..., vn., labeled counterclockwise, and let p be any point in the plane. Then

 $A(P) = A(p_1|v_{n-1}, v_{n-1}) + A(p_1v_{n}, v_2) + A(p_1v_2v_3) + ... + A(p_nv_{n-1}, v_{n-1}) + A(p_1v_{n-1}, v_0)$

$$
\frac{1}{\sqrt{1 + \frac{V_{i} - (X_{\tau_{i}} - Y_{\tau})}{2}}}
$$
\n
$$
2 \sqrt{P} = \sum_{i=0}^{n-1} (X_{i}Y_{i+1} - Y_{\tau}X_{i+1})
$$
\n
$$
= \sum_{i=0}^{n-1} (X_{i} + X_{i+1})(Y_{i+1} - Y_{\tau})
$$

Ordertypes and chirotopes (for point sets in \mathbb{R}^2)

The order type of a set of points in the plane refers to the combinatorial interview ingpe of a set of point is in the plane refers to the compini
information about the orientation of every triple of points in the set. Specifically, it describes whether each triple form a left turn a right turn or is collinear.

Two sets of points in \mathbb{R}^2 have the same order type if there is a one-one correspondence between their points that preserves the orientation of every triplet.

The function $f: S_{n}S_{n}$ where $f(a)=\alpha_{n} f(b) \circ \beta_{n} f(c) = f_{n} f(d) = \beta_{n}$ s atisfy that the orientation of every triplet T institute same that the orientation at $f(T)$ en Sz.

For a set of points $P = \{p_1, ..., p_n\}$ in \mathbb{R}^d , the chirotope χ is a function: $\sqrt{\chi_1 \{\!\!\{1,2,\cdots,n\}}^{\mathfrak{e}_{+1}} \rightarrow \{\!\!\{-,+\} ,\!\!\sigma\}}$

where $\overline{x(i_1,i_2,i_3)}$ represents the orientation \overline{q} the d_{+1} points indexed b_4 $\{i_1,...,i_{d+3}\}.$

. The chirotope is antisymetric, meaning that swapping
two indres the tuple the sign of the function changes.

How many order types there are?

 C onvex $|t_1|$ $|I$ recommend to read Matousek's book).

A set $C \subseteq \mathbb{R}^d$ is convex μ for every two points $\mathsf{x}, \mathsf{y} \in \mathsf{C}$ the whole segment xi is also contained in C. In other words, for every telo,is, the point $tx + (1-t)y$ belongs to C .

The intersection of an arbitrary family of convex sets is
obviously convex. So we can define the convex hull of a set XcI , denoted by conv(X), as the intersection of all convex sets $\lfloor m \rfloor$ R^e containing \overline{X} .

Claim. A point x belongs to conv(X) iff there exist points
x, x, ..., x, E x and nonegative real numbers t.,.., t, with $\sum_{t=1}^{n} t_i$: 1

Proof:	\Rightarrow) By induction on the number of points.
• If n=2, this is by definition.	
• Suppose this is valid (on n-t points)	
• Let x be a point in conv(X) where IX	

$$
2 = a_1x_1 + a_2x_2 + \cdots + a_{n-1}x_n
$$

\n
$$
x = \frac{1}{2}p + (1-t)x_n
$$

\n
$$
= a_1t x_1 + \cdots + a_{n-1}t + (1-t)x_n
$$

\n
$$
\sum_{r=1}^{n-1} a_r t + (1-t) = t \sum_{r=1}^{n-1} a_r + (1-t)
$$

\n
$$
= t + (1-t)
$$

 \neq The set of all convex contains contains X , and it is convex.

ΞY

 \overline{M}

Theorem (Caratheodory's theorem). Let $X \subseteq \mathbb{R}^d$. Then each point of conv(x) is a convex continuation of at most dt points of X.

Proof: Let p be a point in the convex hull of X, then
\n
$$
p = \alpha_1 X_1 + \alpha_2 X_2 + \dots + \alpha_n X_n
$$
\nfor some positive α_i 's, s.t. $\sum_{i=1}^{n} \alpha_i = 1$.

Suppose then that $n > d+1$. Then the points $x_1-x_1, x_3-x_1, ... , x_n-x_n$ are linearly. dependent. Let β : $z_2,...,n$, be real numbers, not all zero, s.t

$$
\sum_{k=2}^{\infty} \beta_i (x_i - x_i) = 0
$$
. \leftarrow Prove

So there are constants p., p. not all zero, st

$$
\sum_{i=1}^{n} \gamma_i \cdot \chi_i = 0 \quad \text{and} \quad \sum_{i=1}^{n} \gamma_i = 0 \quad \leftarrow \text{Prove } |I|
$$

 \bot at \top be a sobset of positive scalars { $\{i \in \mathbb{N} : \gamma_{i} > 0\}$

$$
\frac{a}{\det} \frac{1}{\det} \frac{\alpha}{\alpha}
$$

Then we have
$$
p = \sum_{i=1}^{n} (d_i - a\gamma_i)x_i
$$
,

$$
\sum_{i=1}^{n} \alpha_i x_i = \sum_{i=1}^{n} a\gamma_i x_i
$$
and least one \overline{C} thus is no zero
in deed is goma be
 $\alpha_i x_i$

 $\overline{Observe}$ $\overline{H}_{\text{net}}$ \overline{H}_{he} som \overline{cf} coefficients is $\overline{1}$

 \mathbb{Z}

: We have a convex conv with les than n>d+1 points.

After repeating the above proces several times
we can express p as conviconvination of at most dtipts

 $Thm(Radon's lemma)$. Let A loe a set of $d+z$ points in \mathbb{R}^d . Then there exist two disjoint subsets $A_1, A_2 \subset A$ s.t. $conv(A) \cap conv(B) \neq \emptyset$,

Then exists numbers $\alpha_1, \ldots, \alpha_{n+1}$ not all of them α st.

$$
2\alpha_1 a_2 = 0
$$
 and $2\alpha_1 = 0$.

$$
S_{\alpha} + P = \{ \vec{c} : \alpha \in 50 \} \quad , \quad N = \{ \vec{c} : \alpha \in 6 \}.
$$

 $\lfloor 1e^{\frac{1}{2}} \rfloor$ us put $A_i = \{a_i : i \in P\}$ $A_i = \{a_i : i \in N\}$. We are goin to exhibit a point x in the intersection of the conv hull of these sets.

$$
Put \quad \delta = \sum_{\epsilon \in P} \alpha_{\epsilon} \quad we \quad \text{have} \quad \delta = - \sum_{\epsilon \in P} \alpha_{\epsilon}
$$

$$
\text{degree} = \frac{a}{\epsilon} \sqrt{\frac{a}{s}} a
$$

Since $\sum_{i=1}^{d_{11}} \alpha_i a_i = 0 = \sum_{i \in P} \alpha_i a_i + \sum_{i \in N} \alpha_i a_i$ we also have $\chi = \sum_{i \in N} \alpha_i$ 囫 Thm (Helly). For a finite collection of convex sets $c_1, ... , c_n$ cn^d , I nm (Helly). For a finite collection of convex sets C.,...,Cn CIR,
where n>d, if the intersection of every d+1 of these sets is nonempty, then. $\left[\bigcap_{\tau} C_{\tau} \right] + \emptyset$.

Proof: By induction on n. Since n>d by hypothesis we have a base case However we are going to show the case ⁿ ⁼ ^d+z , which will later be used in conjunction with the inductive hypothesis to prove the inductive step.

Inductive step.
Choose a common point a: of all sets Cj where $j \neq i$. Choose a common point a: of all sets
i.e., a: e N C;. Let A= {a, a,..., adr2}. $j \neq i$

 B_{Y} , Radon's Thm, there is a nontrival, disjoint partition A_1 , A_2 σ_{+} as $+$ conv(A.) Λ conv(A.) intersect at some point \times .

 $\mathsf A$ lso, observe that \forall ū ϵ [d+2], the only point that is not in ${\mathcal C}_{\epsilon}$ but is in $\mathsf A$ Is a: Note that since $a_i \in A$, and $A = A_i \cup A_i$, we can assume without loss
of generality that $a_i \in A_i$. This means that $a_i \notin A_i$ so $A_i \subset C_i$. of generality that afte A., This means that aff A. 80 A.c Cf.
Since C, is convex, it has to contain the convex hull of A. and in particular the point X. Since C₁ is convex, it has to contain the convex
Hence, x is common to all the C_{E's,} i.e., xence.

A similar argument proves the cases $n > d_2$. \boxtimes

Thm (Helly). For a finite collection of convex sets $|c|, ... , c_n|$ c \mathbb{R}^d , I nm (Helly). For a finite collection of convex sets Ci,...,Cn CIR,
where n>d, if the intersection of every dti of these sets is nonempty,then. $\bigcap_{\epsilon=1} C_{\epsilon} + \varnothing.$

Exercises:

Exercises:
O Let I be a finite family of parallel line segments in \mathbb{R}^2 , each three of which admit a common transversal. Then there is ^a common transversal to all members of 1. ↓-

Proof: We may suppose I consist in at least 3 members and all of them are parallel to the Y-axis. For each segment $S \in L$ Let $C_5 = \{(a,b) \in \mathbb{R}^2$: $S \cap \{a,b\}$ where $\{a,b\} = \{7\} = \{2,3\}$ Each Cs is convex and each 3 have nonempty intersection then by HT. there is a point $(a,b) \in \bigcap_{s} G_s$. St] Each Us is convex and each 3 here nonempty intersection then by H.I.
The line $y = a_0x + b_0$ is a transversal common to all members of J. $\circled{2}$ Consider a family of convex sets $F = \{C_1, ..., C_n\}$ in \mathbb{R}^d , and let C be a convex set in \mathbb{R}^d .
If for every die elemets of F there is a translation of C that intersect them, I_{+} for every die elemets of F there is a translation of C that intersect them, exist a translation of C that intersect all the convex sets in F .

